10 research outputs found

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Understanding Multi-Channel Customer Behavior in Retail

    No full text
    Online shopping is gaining popularity. Traditional retailers with physical stores adjust to this trend by allowing their customers to shop online as well as offline, in-store. Increasingly, customers can browse and purchase products across multiple shopping channels. Understanding how customer behavior relates to the availability of multiple shopping channels is an important prerequisite for many downstream machine learning tasks, such as recommendation and purchase prediction. However, previous work in this domain is limited to analyzing single-channel behavior only. In this paper, we provide the first insights into multi-channel customer behavior in retail based on a large sample of 2.8 million transactions originating from 300,000 customers of a food retailer in Europe. Our analysis reveals significant differences in customer behavior across online and offline channels, for example with respect to the repeat ratio of item purchases and basket size. Based on these findings, we investigate the performance of a next basket recommendation model under multi-channel settings. We find that the recommendation performance differs significantly for customers based on their choice of shopping channel, which strongly indicates that future research on recommenders in this area should take into account the particular characteristics of multi-channel retail shopping

    Demand Forecasting in the Presence of Privileged Information

    No full text
    Predicting the amount of sales in the future is a fundamental problem in the replenishment process of retail companies. Models for forecasting the demand of an item typically rely on influential features and historical sales of the item. However, the values of some influential features (to which we refer as non-plannable features) are only known during model training (for the past), and not for the future at prediction time. Examples of such features include sales in other channels, such as other stores in chain supermarkets. Existing forecasting methods ignore such non-plannable features or wrongly assume that they are also known at prediction time. We identify non-plannable features as privileged information, i.e., information that is available at training time but not at prediction time, and design a neural network to leverage this source of data accordingly. We present a dual branch neural network architecture that incorporates non-plannable features at training time, with a first branch to embed the historical information, and a second branch, the privileged information (PI) branch, to predict demand based on privileged information. Next, we leverage a single branch network at prediction time, which applies a simulation component to mimic the behavior of the PI branch, whose inputs are not available at prediction time. We evaluate our approach on two real-world forecasting datasets, and find that it outperforms state-of-the-art competitors in terms of mean absolute error and symmetric mean absolute percentage error metrics. We further provide visualizations and conduct experiments to validate the contribution of different components in our proposed architecture
    corecore